The Schouten Curvature Tensor and the Jacobi Equation in Sub-Riemannian Geometry

نویسندگان

چکیده

We show that if a distribution does not depend on the vertical coordinates, then Schouten curvature tensor coincides with Riemannian curvature. The and nonholonomicity are used to write Jacobi equation for distribution. This leads study of second-order optimality conditions horizontal geodesics in sub-Riemannian geometry. conjugate points Heisenberg group as an example.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sub-Riemannian curvature in contact geometry

We compare different notions of curvature on contact sub-Riemannian manifolds. In particular we introduce canonical curvatures as the coefficients of the sub-Riemannian Jacobi equation. The main result is that all these coefficients are encoded in the asymptotic expansion of the horizontal derivatives of the sub-Riemannian distance. We explicitly compute their expressions in terms of the standa...

متن کامل

Constant Mean Curvature Surfaces in Sub-riemannian Geometry

We investigate the minimal and isoperimetric surface problems in a large class of sub-Riemannian manifolds, the so-called Vertically Rigid spaces. We construct an adapted connection for such spaces and, using the variational tools of Bryant, Griffiths and Grossman, derive succinct forms of the Euler-Lagrange equations for critical points for the associated variational problems. Using the Euler-...

متن کامل

Schouten curvature functions on locally conformally flat Riemannian manifolds

Consider a compact Riemannian manifold (M, g) with metric g and dimension n ≥ 3. The Schouten tensor Ag associated with g is a symmetric (0, 2)-tensor field describing the non-conformally-invariant part of the curvature tensor of g. In this paper, we consider the elementary symmetric functions {σk(Ag), 1 ≤ k ≤ n} of the eigenvalues of Ag with respect to g; we call σk(Ag) the k-th Schouten curva...

متن کامل

Jacobi Equation, Riemannian Curvature and the Motion of a Perfect Incompressible Fluid

Following some Arnol’d results relative to the geometry underlying the dynamics of a perfect incompressible fluid [3] (geodesics of left-invariant metrics on Lie groups), the linear differential equation relative to a Lagrangian stability analysis are established. This differential equation, called Jacobi equation, describes, for the same fluid element, the time evolution of the difference betw...

متن کامل

Sub - Riemannian geometry :

Take an n-dimensional manifold M . Endow it with a distribution, by which I mean a smooth linear subbundle D ⊂ TM of its tangent bundle TM . So, for x ∈ M , we have a k-plane Dx ⊂ TxM , and by letting x vary we obtain a smoothly varying family of k-planes on M . Put a smoothly varying family g of inner products on each k-plane. The data (M,D, g) is, by definition, a sub-Riemannian geometry. Tak...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Sciences

سال: 2021

ISSN: ['1072-3374', '1573-8795']

DOI: https://doi.org/10.1007/s10958-021-05361-y